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Generalization of the fourth-order Hylleraas functional form have been performed for the
case of non-Hermitian operators. Our new formulas are relevant when the Hermitian Born–
Oppenheimer Hamiltonian is decomposed into a non-Hermitian unperturbed part and also
a non-Hermitian perturbation. The results can be used to develop BSSE-free intermolecular
perturbation theory up to fourth-order.

1. Introduction

Recently, two different but conceptually similar second-order intermolecular per-
turbation theories have been developed by I. Mayer and us taking into account the
“basis set superposition error” (BSSE) according to the a priori corrected “chemical
Hamiltonian approach” (CHA) [3,7–9]. As it is known, in the CHA scheme we work
with non-Hermitian operators because the BSSE is not a physical phenomenon, so
no Hermitian operators correspond to it [5]. Additionally, the effective intramolecular
Hamiltonian itself is not Hermitian too, due to the basis non-orthogonality. In both
perturbation schemes (they are called “CHA-PT2” and “CHA-MP2”) the appropriate
equations were derived from the form of the second-order Hylleraas functional [2] for
the case of a non-Hermitian unperturbed part and also a non-Hermitian perturbation [6].
As these two methods gave results that are in good agrement with the a posteriori cor-
rected Boys–Bernardi (BB) ones [1,4], it authorizes us to make an attempt to solve
the a priori BSSE-free perturbation problem up to fourth-order in the near future.
To achieve this, it is very important to obtain an adequate form for the fourth-order
Hylleraas functional when the unperturbed Hamiltonian and also the perturbation are
not Hermitian. The purpose of the present work is to derive the expression of this
required functional.
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2. The fourth-order Hylleraas functional for a non-Hermitian
unperturbed case

Let us start from the usual Born–Oppenheimer Hamiltonian which is Hermitian,
of course. Dividing into two parts this Hamiltonian, where neither Ĥ0 nor V̂ are
Hermitian, the following equation holds:

Ĥ = Ĥ0 + V̂ = Ĥ0† + V̂
†

= Ĥ
†
; (1)

here the dagger (†) indicates the Hermitian conjugate (or adjoint) of the operator.
Now, we can define the zeroth-order Schrödinger equation as

Ĥ0|Ψ0〉 = E0|Ψ0〉 and 〈Ψ0|Ĥ0† = E∗0 〈Ψ0|, (2)

where Ψ0 is the ground-state right eigenvector of Ĥ0 and also it is the left eigenvector
of Ĥ0† . We use Dirac’s “bra” and “ket” formalism because of the convenience of cal-
culating matrix elements. Since Ĥ0 is not Hermitian, we have to permit the possibility
of E0 being complex.

The next step is to define the appropriate form of the wavefunction:

|Ψ〉 = |Ψ0 + ψ1 + ψ2 + ψ3〉 = |Ψ0〉+ |ψ1〉+ |ψ2〉+ |ψ3〉, (3)

where ψ1, ψ2 and ψ3 are the first-, second- and third-order wavefunctions, respectively.
Consider now the expectation value

E =
〈Ψ0 + ψ1 + ψ2 + ψ3|Ĥ|Ψ0 + ψ1 + ψ2 + ψ3〉
〈Ψ0 + ψ1 + ψ2 + ψ3|Ψ0 + ψ1 + ψ2 + ψ3〉

. (4)

Our aim is to expand this expression up to terms of fourth-order keeping in mind that
E is necessarily real. Moreover, we may declare that Ĥ0, Ĥ0† , |Ψ0〉, 〈Ψ0|, E0 and E∗0
are zero-order, V̂ , V̂

†
, 〈ψ1| and |ψ1〉 are first-order, while 〈ψ2|, |ψ2〉 and 〈ψ3|, |ψ3〉 are

second- and third-order quantities, respectively. On the other hand, we do not intend
to calculate the explicit form of the higher-order wavefunctions, these results come
from an independent CHA calculation (for the first-order see [8]).

To evaluate the expectation value, one may substitute equations (1) and (3) into
equation (4):

E =
1

〈Ψ0|Ψ0〉
[
〈Ψ0|Ĥ |Ψ0〉+E0〈ψ1|Ψ0〉+ 〈ψ1|V̂ |Ψ0〉+E0〈ψ2|Ψ0〉

+ 〈ψ2|V̂ |Ψ0〉+E0〈ψ3|Ψ0〉+ 〈ψ3|V̂ |Ψ0〉+E∗0 〈Ψ0|ψ1〉+ 〈Ψ0|V̂
† |ψ1〉

+ 〈ψ1|Ĥ0 + V̂ |ψ1〉+ 〈ψ2|Ĥ0 + V̂ |ψ1〉+ 〈ψ3|Ĥ0 + V̂ |ψ1〉+E∗0 〈Ψ0|ψ2〉
+ 〈Ψ0|V̂

† |ψ2〉+ 〈ψ1|Ĥ0 + V̂ |ψ2〉+ 〈ψ2|Ĥ0 + V̂ |ψ2〉+ 〈ψ3|Ĥ0 + V̂ |ψ2〉
+E∗0 〈Ψ0|ψ3〉+ 〈Ψ0|V̂

† |ψ3〉+ 〈ψ1|Ĥ0 + V̂ |ψ3〉+ 〈ψ2|Ĥ0 + V̂ |ψ3〉
+ 〈ψ3|Ĥ0 + V̂ |ψ3〉

]
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∗
[

1 +
〈Ψ0|ψ1〉
〈Ψ0|Ψ0〉

+
〈Ψ0|ψ2〉
〈Ψ0|Ψ0〉

+
〈Ψ0|ψ3〉
〈Ψ0|Ψ0〉

+
〈ψ1|Ψ0〉
〈Ψ0|Ψ0〉

+
〈ψ1|ψ1〉
〈Ψ0|Ψ0〉

+
〈ψ1|ψ2〉
〈Ψ0|Ψ0〉

+
〈ψ1|ψ3〉
〈Ψ0|Ψ0〉

+
〈ψ2|Ψ0〉
〈Ψ0|Ψ0〉

+
〈ψ2|ψ1〉
〈Ψ0|Ψ0〉

+
〈ψ2|ψ2〉
〈Ψ0|Ψ0〉

+
〈ψ2|ψ3〉
〈Ψ0|Ψ0〉

+
〈ψ3|Ψ0〉
〈Ψ0|Ψ0〉

+
〈ψ3|ψ1〉
〈Ψ0|Ψ0〉

+
〈ψ3|ψ2〉
〈Ψ0|Ψ0〉

+
〈ψ3|ψ3〉
〈Ψ0|Ψ0〉

]−1

. (5)

Here we used equation (2). It can be seen that several terms are fifth- or higher-order
of magnitude and we will omit them in the future considerations. As a consequence of
the hermiticity of Ĥ , the terms where the expectation value of the operators Ĥ0 and
V̂ or Ĥ0† and V̂

†
have been taken between the same wavefunction are automatically

real. The only terms which are not guarantied to be real are the fourth-order matrix
elements of operators Ĥ0 or Ĥ0† , because the same kind of matrix elements, where
the operators Ĥ0 or Ĥ0† were changed to V̂ or V̂

†
, were cancelled, according to that

they are fifth-order ones. To remove this difficulty, such fourth-order terms will be
replaced by their real parts. Considering the expressions of E0 and E∗0 ,

E0 =
〈Ψ0|Ĥ0|Ψ0〉
〈Ψ0|Ψ0〉

, E∗0 =
〈Ψ0|Ĥ0† |Ψ0〉
〈Ψ0|Ψ0〉

, (6)

and using the expansion (1 +x)−1 = 1−x+x2−x3 +x4−· · ·, the following formula
can be obtained up to fourth-order:

E ≈ 1
〈Ψ0|Ψ0〉

[
〈Ψ0|Ĥ|Ψ0〉+E0〈ψ1|Ψ0〉+ 〈ψ1|V̂ |Ψ0〉+E0〈ψ2|Ψ0〉

+ 〈ψ2|V̂ |Ψ0〉+E0〈ψ3|Ψ0〉+ 〈ψ3|V̂ |Ψ0〉+E∗0 〈Ψ0|ψ1〉+ 〈Ψ0|V̂
† |ψ1〉

+ 〈ψ1|Ĥ0 + V̂ |ψ1〉+ 〈ψ2|Ĥ0 + V̂ |ψ1〉+ Re
(
〈ψ3|Ĥ0|ψ1〉

)
+E∗0 〈Ψ0|ψ2〉+ 〈Ψ0|V̂

† |ψ2〉+ 〈ψ1|Ĥ0 + V̂ |ψ2〉+ Re
(
〈ψ2|Ĥ0|ψ2〉

)
+E∗0 〈Ψ0|ψ3〉+ 〈Ψ0|V̂

† |ψ3〉+ Re
(
〈ψ1|Ĥ0|ψ3〉

)]
∗
{

1− 1
〈Ψ0|Ψ0〉

[
〈Ψ0|ψ1〉+ 〈Ψ0|ψ2〉+ 〈Ψ0|ψ3〉

+ 〈ψ1|Ψ0〉+ 〈ψ1|ψ1〉+ 〈ψ1|ψ2〉+ 〈ψ1|ψ3〉+ 〈ψ2|Ψ0〉
+ 〈ψ2|ψ1〉+ 〈ψ2|ψ2〉+ 〈ψ3|Ψ0〉+ 〈ψ3|ψ1〉

]
+

1
〈Ψ0|Ψ0〉2

[(
〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉+ 〈Ψ0|ψ2〉+ 〈ψ2|Ψ0〉+ 〈ψ1|ψ1〉

)2

+ 2
(
〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉

)
∗
(
〈ψ1|ψ2〉+ 〈ψ2|ψ1〉+ 〈Ψ0|ψ3〉+ 〈ψ3|Ψ0〉

)]
− 1
〈Ψ0|Ψ0〉3

[(
〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉

)3
+ 3
(
〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉

)2
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∗
(
〈ψ1|ψ1〉+ 〈Ψ0|ψ2〉+ 〈ψ2|Ψ0〉

)]
+

1
〈Ψ0|Ψ0〉4

(
〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉

)4
}
. (7)

This formula can be rearranged according to the different orders of magnitudes:

E ≈ 〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

+ J2 + J3 + J4, (8)

where

J2 =
1

〈Ψ0|Ψ0〉
A,

J3 =
1

〈Ψ0|Ψ0〉
B − 〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉

〈Ψ0|Ψ0〉2
A,

J4 =
1

〈Ψ0|Ψ0〉
C − 〈Ψ0|ψ1〉+ 〈ψ1|Ψ0〉

〈Ψ0|Ψ0〉2
B +

(Ψ0|ψ1〉+ 〈ψ1|Ψ0)2

〈Ψ0|Ψ0〉2
A

− (〈ψ1|ψ1〉+ 〈Ψ0|ψ2〉+ 〈ψ2|Ψ0〉)
〈Ψ0|Ψ0〉

A

(9)

are the second-, third- and fourth-order corrections to the value of the energy. The
expressions for A, B and C are

A= 〈ψ1|V̂ −E1|Ψ0〉+ 〈Ψ0|V̂
† −E∗1 |ψ1〉+ Re

(
〈ψ1|Ĥ0 −E0|ψ1〉

)
,

B= 〈Ψ0|V̂ † −E∗1 |ψ2〉+ 〈ψ2|V̂ −E1|Ψ0〉+ Re
(
〈ψ2|Ĥ0 −E0|ψ1〉

)
+ Re

(
〈ψ1|V̂ −E1|ψ1〉

)
+ Re

(
〈ψ1|Ĥ0 −E0|ψ2〉

)
, (10)

C = 〈ψ3|V̂ −E1|Ψ0〉+ 〈Ψ0|V̂
† −E∗1 |ψ3〉+ Re

(
〈ψ2|V̂ −E1|ψ1〉

)
+ Re

(
〈ψ1|V̂ −E1|ψ2〉

)
+ Re

(
〈ψ3|Ĥ0 −E0|ψ1〉

)
+ Re

(
〈ψ1|Ĥ0 −E0|ψ3〉

)
+ Re

(
〈ψ2|Ĥ0 −E0|ψ2〉

)
.

Here E1 and E∗1 are the first-order energy term and its complex conjugate,

E1 =
〈Ψ0|V̂ |Ψ0〉
〈Ψ0|Ψ0〉

, E∗1 =
〈Ψ0|V̂

† |Ψ0〉
〈Ψ0|Ψ0〉

. (11)

As it can be seen in equations (10), the formula for J2 is the same as that
obtained by Mayer in [6]. We hope that based on our new result explicit energy
expressions can be obtained for the third- and fourth-order BSSE-free intermolecular
energy components if one calculates the second- and third-order CHA wavefunctions
and substitutes them into the above-derived J3 and J4 formulae. Our preliminary
numerical results with the second-order CHA-PT2 and CHA-MP2 schemes, which
were developed from the expression of J2 [3,7–9], are very encouraging, completely
supporting the present work and the further considerations.
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